首页> 外文OA文献 >Exact likelihood computation in Boolean networks with probabilistic time delays, and its application in signal network reconstruction
【2h】

Exact likelihood computation in Boolean networks with probabilistic time delays, and its application in signal network reconstruction

机译:具有概率时延的布尔网络中的精确似然计算及其在信号网络重构中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motivation: For biological pathways, it is common to measure a gene expression time series after various knockdowns of genes that are putatively involved in the process of interest. These interventional time-resolved data are most suitable for the elucidation of dynamic causal relationships in signaling networks. Even with this kind of data it is still a major and largely unsolved challenge to infer the topology and interaction logic of the underlying regulatory network. Results: In this work, we present a novel model-based approach involving Boolean networks to reconstruct small to medium-sized regulatory networks. In particular, we solve the problem of exact likelihood computation in Boolean networks with probabilistic exponential time delays. Simulations demonstrate the high accuracy of our approach. We apply our method to data of Ivanova et al. (2006), where RNA interference knockdown experiments were used to build a network of the key regulatory genes governing mouse stem cell maintenance and differentiation. In contrast to previous analyses of that data set, our method can identify feedback loops and provides new insights into the interplay of some master regulators in embryonic stem cell development. Availability and implementation: The algorithm is implemented in the statistical language R. Code and documentation are available at Bioinformatics online. Contact: duemcke@mpipz.mpg.de or tresch@mpipz.mpg.de Supplementary information: Supplementary Materials are available at Bioinfomatics online
机译:动机:对于生物学途径,通常是在各种可能涉及目的过程的基因敲低后,测量基因表达时间序列。这些干预性的时间分辨数据最适合用于阐明信令网络中的动态因果关系。即使有了这类数据,要推断基础监管网络的拓扑和交互逻辑仍然是一个主要且很大程度上尚未解决的挑战。结果:在这项工作中,我们提出了一种基于模型的新颖方法,该方法涉及布尔网络来重构中小型监管网络。特别是,我们解决了具有概率指数时滞的布尔网络中精确似然计算的问题。仿真证明了我们方法的高精度。我们将我们的方法应用于Ivanova等人的数据。 (2006年),其中RNA干扰敲低实验被用来建立一个关键调控基因的网络,以控制小鼠干细胞的维持和分化。与该数据集的先前分析相比,我们的方法可以识别反馈回路,并提供一些有关胚胎干细胞发育中的主要调控因子相互作用的新见解。可用性和实现:该算法以统计语言R实现。代码和文档可从Bioinformatics在线获得。联系人:duemcke@mpipz.mpg.de或tresch@mpipz.mpg.de补充信息:补充材料可从Bioinfomatics在线获得

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号